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Abstract—The asymptotic scheme for the analysis of dilute elastic composites, which includes
circular inclusions with imperfect bonding at the interface is presented. Interface is characterized by
a discontinuous displacement field across it, linearly related to the tractions. The problem of a
linear-elastic, circular inclusion with generic loading condition at infinity is solved, and used to
analyze effective elastic moduli of composite materials. Effects due to the interaction of a small
circular defect and a crack are investigated. It is shown that interfacial stiffness has a strong effect
on the crack path and therefore may be an important design parameter for composites. 1998
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The description of the mechanical behaviour of fibrous and particulate-reinforced materials
is crucial for design purposes. In these materials, the inclusions may often be imperfectly
bonded to the matrix, owing to several reasons. In some cases, a thin layer, called interphase,
is introduced to improve the performance of the composite. In other cases, the interphase
may be the product of chemical interaction between phases or localized mechanical damage
of one or both phases (see the detailed discussion by Aboudi, 1991). It is obvious that such
interface conditions have a strong effect on the mechanical behaviour of the composite. In
the last few years, strong research efforts have been devoted to analyze interfaces from the
mechanical point of view. In particular, many different models of interfacial behaviour can
be defined. The simplest of these models is the linear interface, in which a linear relationship
holds at the interface between the traction vector and the displacement jump. This interfacial
constitutive law has been formulated by Jones and Whittier (1967) and may be viewed as
a simplification of the behaviour of a thin, soft elastic layer (Goland and Reissner, 1944 ; a
rigorous proof of this in terms of asymptotic analysis has been found by Klarbring, 1991
and Geymonat and Krasuki, 1996 and is also given here in a different way). The model of
linear interface has been employed by Mal and Bose (1974), Hashin (1990, 1991, 1992),
Levy (1991), Qu (1993), Lipton and Vernescu (1995), and Lipton (1997) in homogenization
problems, by Suo et al. (1992) and Bigoni et al. (1997) in determining the bifurcation loads
of layered elastic structures subject to large strain, and by Tullini et a/. (1997) in the Saint
Venant analysis of layered elastic plates.

A special mention is deserved for the recent work of Gao (1995) who has solved the
circular inclusion problem with linear interface subject to homogeneous remote strain.
In the present article, this result is obtained with a different technique (the Kolosov-
Muskhelishvili complex potentials) and generalized to generic conditions at infinity. In
particular, the plane elastic problem of a circular inclusion connected with a linear interface
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to an infinite medium is considered. A generic loading at infinity is assumed, consisting in
a displacement ficld representable as an analytic function of the position. This is a gen-
eralization of the Eshelby (1957) condition, where a homogeneous deformation is prescribed
at infinity. The importance of this generalization, employed also in (Sendeckyj, 1970; Yu
and Sendeckyj, 1974 and Gong and Meguid, 1993), may be related to the possibility of
analyzing complex loading situations, such as the case of a bending stress field. As emphas-
ized in (Achenbach and Zhu, 1989 ; Gao, 1995), the model of linear interface may predict
(depending on the loading conditions, material and interfacial stiffness parameters) an
unphysical overlapping between the two media in contact. This problem is not addressed
here, except that we present the asymptotic derivation of the linear interface model, rep-
resented as an elastic layer of small stiffness and thickness. This analysis may shed light on
the limits of the model.

In closure of this paper, the solution relative to the imperfectly bonded interface is
employed in two problems, namely, determination of crack trajectory in a brittle elastic
matrix with defects and determination of overall properties of a dilute-composite material.
The latter problem may be analyzed in different ways: for instance using the variational
technique of Hashin and Shtrikman (1963). Alternatively, following the approach of
Movchan and Serkov (1997), the matrix of effective elastic moduli of dilute, periodic
composites #* may be written in the form

H*~ KO+ gg),

where #° corresponds to the matrix material, fis the volume fraction of inclusions and 2
is the Polya—-Szeg6 matrix, which depends on the elastic constants of matrix and inclusion,
on the stiffness coefficients of the interface and on the radius of inclusion. Obviously, when
2 is zero, the effective elastic moduli coincide with elastic moduli of the matrix. One of the
interesting results of this paper is that the Polya—Szegd matrix may in fact become identically
zero for inclusion stiffer than the matrix and an appropriate choice of the interface stiffness
parameters. A similar result was obtained independently by Lipton and Vernescu (1995)
for all volume-fractions, but for special interfacial and loading conditions. This and other
results presented in this article show the strong effect of interfacial compliance. For instance,
in the analysis of crack inclusion interaction it can be pointed out that interface stiffness
practically “‘controls’ the shape of crack trajectory, particularly for inclusions stiffer than
the matrix. Therefore, when the interfacial mechanical characteristics can be used as design
parameters for a composite, results of this paper can be applied to provide a best estimate
for overall toughness of the material.

2. ASYMPTOTIC DERIVATION OF CONSTITUTIVE EQUATIONS OF LINEAR
INTERFACE

In this Section an asymptotic expansion is presented for the solution of an isotropic-
elastic circular inclusion in an isotropic-elastic plane, coated by a cylindrically—anisotropic,
finite-thickness elastic layer. This asymptotic procedure yields the stiffness constants of the
linear interface model, that will be used in the following sections. This model is here
obtained as the behaviour of a thin, soft, elastic layer in the limit when the layer thickness
and stiffness tend to zero. This limit can also be derived through a mixed variational
principle in the case of isotropic interphase (Klarbring, 1991) and using the I'-convergence
technique for anisotropic interphase (Geymonat and Krasucki, 1996; see also Acerbi and
Buttazzo, 1986a, b). We use the following notation for the geometry of the domain: Z, is
the circular inclusion, E, the interphase, and E; the remaining part of infinite domain. The
inclusion and the infinite plane are isotropic elastic solids, respectively characterised by the
Lamé constants u,, 4,, and u,, A;. The interface is assumed, for generality, to be cylindrically
anisotropic (in the plane) and therefore characterized by the constitutive equation
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6 = #Hs,

where ¢ and ¢ are vectors collecting the components of stress and strain tensors, i.e.

o= (Urrs Gaos \/Eo-r(?)t’ &= (8rr’ E9p> ﬁgre)l,

and
¢, Cs O
H =Cq Cou 0 | 0]
0 0 2G,

which depends on four stiffness coefficients (in the particular case of isotropic elasticity
C,, = A+2u, Cy= Cy = 1 and G, = p). Therefore, the elasticity problem in compound
domain can be formulated as

Lrﬂ(u(l)sl‘h’ll) =0’ XEElv

L, Cy,Gy) =0, xeB,,

Lr(?(u(3)v#3al3) = 0’ XEE39 (2)

where L,,(*) is the Navier operator written in the polar coordinate system. In matrix form
it can be represented as
Ly(*) =D, #D3("),
a 1 1 1190 0 1 1120

+
or r r 2 rdf or r > r 6
D, = V2 . D, = V2 ,
o 12 (o 2 o 12 1 (0 1
rdf \/5 or r r 00 \/5 or r
where # is given by eqn (1) for the interphase, whereas for the matrix and inclusion
A+2u A 0

#=| 1 A+2u O
0 0 2u

The conditions at the outer and inner boundaries of the interphase correspond to a
perfectly bonded interface:

e @) =¢®@?®), u» =u?®, asr=R

s u?®) =6"W?), u® =u?, asr=R+e, (3)

where ¢ is the thickness of the interphase, 6™ is the traction vector relative to the radial
unit vector n.

Solution of the above formulated problem is sought in the form of the asymptotic
series

X . X n x© .
u =Y gu), u® =Y fu®, u® =3 gul®.
i=0 i=0 i=0

Let us introduce the scaled (“fast’) variable p defined as
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p=(r—R",
where R is the radius of the inclusion, and let us apply this variable in the interphase (region

2) only. Then the equilibrium equations inside this region can be expanded via different
powers of ¢ with the leading term

*ul?)
1 rr ap 2
> =0 “4)
¢ | T
6r apz

The solution of system (4) can be found in the form

(uﬁ?&) (A(B)p+B(0)> )
i) \COp+DO))

The radial traction vector in any point of the interphase can therefore be rewritten, taking
into account only the leading term, in the form:

1/C, A0
) = CEH;). ©)
or

From eqns (3) and (6) we immediately deduce that the leading terms of tractions at the
outer and inner boundary of the interphase coincide :

") |,-r = e (W) = 6™ ) |- g (7)
Let us now analyze the condition of displacement continuity. Following eqn (5), the

displacement jump between the outer boundary (p = 1) and inner boundary (p = 0) is
specified by the functions 4(6) and C(6). Employing eqn (6) we obtain

u£30] |r=R+£—u£.10) Ir:R = C* Grr(ug)l)) ’ (8)
rr r=R
ug)?(g ‘r=R+s—"ug.lg |r=R = G* Grﬂ(ugl)) > (9)
or r=R
where we have assumed that the elasticity coefficients of the interphase go to zero as
Crr = SC;.:‘a GHr = EGgr' (10)

Now we can expand first terms in eqns (8) and (9) in Taylor series (here we extend the
functions >, 4§ smoothly in the thin interphase) :
ouio

or | _x

r=

+0(). (11)

3 3
U3 rerie = U l—r+e

Substituting the expansion (11) into (8) and (9), and considering only the coefficients of
zero order in & we obtain the interface conditions for a linear interface (viewed as a zero-
thickness interphase)
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1

43 lr=r =t lrmr = g on @) | (12)
£d r=R
1

i} mn =l emk = Gz o) | (13)
or r=R

It follows immediately from expressions (7), (12) and (13) that across the linear interface
the tractions are continuous, but displacement jumps are possible. These jumps are related
to the tractions at the interface with the stiffness coefficients

Crr __ G(?r

Srz N SG—

(14)

If we assume instead of eqn (10) that the elasticity coefficients of the interphase go to zero
as

C,=¢"PCx, G, =¢"5GE:, 0<p<l, (15)
the perfectly bonded interface conditions are obtained :

a(n)(u(])) |r=R = G(H)(u(3))|r=Ra “(1)|r=R = “(3)|r=R as e — 0' (16)

In closure of this Section, we note that a counterpart to the mathematical simplicity
of the linear interface model is the possibility of unphysical overlapping between matrix
and inclusion. This issue may be interesting, but is not addressed here (see, e.g. Achenbach
and Zhu, 1989 ; Gao, 1995).

3. CIRCULAR INCLUSION WITH IMPERFECT BONDING: LOADING AT INFINITY

An isotropic, linearly-elastic infinite plane is considered, which contains a circular,
isotropic linearly-elastic inclusion of radius R. Quantities related to the plane and to the
inclusion are denoted with indices + and —, respectively. According to this convention,
Ay, p.and A_, u_ are the Lamé constants of the matrix and of the inclusion. The circular
inclusion is connected to the matrix with a linear interface, which, according to results of
previous Section, is characterized (at r = R) by

Oy =0,, 05 =0y, (17)
oy =5[USxT)=U(x7)], o4 =s5[U5 (x7)—Us (x7)], (18)
where U is the displacement vector, function of point x, and s, and s, are stiffness constants
of the interface, assumed not negative. When both these coefficients tend to infinity, perfect
bonding is recovered. In opposite, when s, and s, are equal to zero, there is no connection
between inclusion and matrix, and the problem reduces to that of a cavity in an infinite

plane. Loading is prescribed at infinity by introducing a generic displacement field :
Ux) - U,(x), asx— oo, (19)

which satisfies the Navier equations and is assumed to be representable as

Uoo(x) z(p(xlaXZ)s q(xl’XZ))’ (20)

where p and g are order N polynomial functions of the point (x,, x,).
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Condition (20), employed among others by Sendeckyj (1970), Yu and Sendeckyj
(1974) and Gong and Meguid (1993), is a generalization of the well-known condition of
homogeneous remote strain. In summary, the problem considered in the present paper is
to find a displacement field U satisfying the Navier equations in the matrix and in the
inclusion

peAUX) + (4, +p,)VY-U(x) =0, xeR)\G,
p AU+ +p )VV-U(x) =0, xeG, 1)

(where G is the region occupied by the inclusion), satisfying conditions (17) and (18) at the
interface, and corresponding to condition (20) at infinity. The standard technique for
solving two-dimensional problems reduces the boundary value problem to the calculation
of the complex potentials ¢(z) and (z). These have direct connection with the components
of the stress tensor and displacement (Muskhelishvili, 1953) :

U4 iU, ﬁe—wwz)—zm—m,

0, +0g = 2(¢'(2) +(7(—Zj)a
—0,,+2io,y = 2e¥ (20" (2) + ' (2)), (22)

where z = x,+ix, and k = (A+3u)(A+ )" for plane strain, x = (5A+6u)(34+2u) " for
plane stress. The complex potentials ¢ and y are analytical functions in the region where
they specify the solution of the elastostatic problem. As a result, the solution is sought
employing the following representation of the complex potentials

o (2) = f 6, YD) = f dz*, 23)

which are analytic inside the disk of radius R, and

+ o0

0,0= ¥ at p.@= 3 bt (4

k= —w0

which are analytic in the outer region {x: R < /x1+x} < + oo} and have a pole at infinity.
The coefficients a,, b, are defined from the conditions (20) at infinity for 0 < k < N, are
null for k > N (ie. a, = b, =0, for k > N), and are unknown to be determined for N
negative. These and coefficients ¢, and d| can be found from boundary conditions. In order
to rewrite the interface boundary conditions in terms of complex potentials, we note that
the continuity of traction at interface corresponds to the following condition:

@ (D) +29L(2)+VY.(2) = 9_(D)+z0" (D) +¥_(2), (25)

where z = Re®. Using the standard Muskhelishvili (1953) technique, the boundary integral
equations holding in the whole plane are deduced

§[¢+(1)+t¢+(t)+lﬁ+(t)] [o_()+t9_ )+ _(0) (f)]dt

L t—z

) (26)

L [—Z

§ [o. (O +t¢+ (f) +y.@Oldr [ lo_()+19" )+ _(9]de

where L denotes the circular boundary of the inclusion.
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Solving this system of equations via standard theorems on Cauchy-type integrals and
employing the expansion for the complex potentials eqns (23)—(24), condition (26) can be
transformed into

+ oc + 0 +oC
Y @R+ Y ka R+ Y b RFzTF
k= —x k= —o0 k= —x
+ oo + oo +oo
=Y R+ Y ke, R Z2*+ Y dRz7%, |zZ|=1. (27)
K=0 K=0

k=0

Collecting coefficients near the same powers of z yields the system of linear equations for
the unknown coeflicients a,, by, ¢, dy:

a,R"+(2—ma, ,R*"+b ,R"=c,R"+(2—n)¢, ,R*"+d ,R7", (28)

where ne Z and coefficients a,, 5, are known from conditions at infinity for » > 0, whereas
coefficients ¢,, d, are equal to zero for n < 0. More precisely, index »n ranges between — N
and N.

Let us consider now the second boundary condition (18). Using the complex potential
representation, the radial and shearing components of the stress tensor can be rewritten in
the following form:

G, = ¢'(2) +¢'(z) — Re[e** (20" (2) + ' ()],
0, = Im[e** (20" (2) +¥' (D))}, 29

Therefore, the boundary conditions (18) take the complex variable form:
s (U =U ) +ise(Ug —Uq) =0, +iog, (30)

or, more explicitly

s, 45 e — iff? :
) [E(KNM(Z)—Z<P+(Z)—ll/+(2))—2u_(x_qa_(z)—2(p(z)—‘pA(z))}
s,—sp[ ¥ — e o
2 |:2u+(x+(p+ (D—Z0" ()~ (2))— z‘uv(K—fp—(Z)—Z‘P —(2) W‘(Z))]

= 0. @+¢,(@—e (Pl @D +¥, (). (D

In terms of Cauchy integrals, system (31) can be written as:

5,480 [ €7, 0 (=10, (=Y, (At 5,45 [ e (k@ ()—t¢” ()—¥_(1))dr
4u, To t—z 4u_ 7L t—z

+ Sr—Sa(‘{f~ ek, () —To' ()~ (1)) ds

4u., t—z
s,—so [ (k_o_()—Tp_ () —y_(1) d¢
- du_ T, t—z

b

t—z

_ ﬂg [0’ (D +0" () —e > (te" (D +¥' (1)) dt



3246

D. Bigoni et al.

s,y [ (i, 0, (=19, () — Y, (1)) dt
4u, 1o t—z
st [ (k@ ()—TpL()—y_(1)drs
4,UA L 1—z
5=y [ e (1,0, ()19, ()~ (1) dr
4H+ L t—z
s f e e g (-9 D~ P_ (D) dt
4/.1_ L 1—2z

[ (D+ ¢, () —e (T (D + ' (D)) ds
t—z )

_ fﬁ

Taking the series expansion of eqn (32) and writing it on the circle of radius R, one gets:

(32)

545, 1 to em 4w
¢ [— <K+ Y aqRz'— Y jaRZV— Y bRz
2 2#+ Jj=—w j=—c Jj=—x
+ o o + o ) . +w ) .
- <K; Y RzZ'=Y je Rz =Y dRz!
2p- i=0 j=0 =0

___se + oC

1 ] ) + oo o +aoc o
l:—<K+ Z dI_R]Zl—J_ z ja,R"ZJ“l— Z bjRJZ./+l>
2 2p, j=—o j=—oc j=—
1 tx ) I . = .
—— (x Y eRzZ' =Y joRZ =Y ¢, RIZ ]
2p. j=0 j=0 j=0

+ 0 +tx
= Y JaR7'Z7Nt Y ja Rz

j==x Jj=—o0

+ o w
=¥ jG-vaR = Y R =1

=

(33)

j==e

After simplification and collection of coefficients near the same power of z in eqn (33), the
following system of linear equations is obtained

S, -
s;: "k s ye R — (1 —m)ay R " —b_,_ R
N
S+ -
vy YKo R —(1=m)¢,_,R'""—d_,_ R""")
S, —S
i 2k dy_oR' "= (m+Da, R —b, R"")
N
g’_s" = 1—n n41 n—1
- 4 (k_¢,_.R —(n+1Dec, 1R —~d,_ R")

=(n+Da,. R"+(0—nr>a, ,R™"+n+1b_,_ R™"2, (34)

where coefficients a, and b, are known from condition at infinity for » > 0, whereas
¢, = d, = 0 for n < 0. More precisely, index » ranges between —N—1and N—1.
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The linear system of eqns (28) and (34) can be solved, thus obtaining the complex
potentials coefficients (see Appendix), which represent the solution of our problem:

Bn—len_z

@y = = {58 R*T T (0 —p, ) — 4" — Dl 2

+ (s +so)Rup_[(n+ D) (- —p,)—(n—DT ]}
a,.; R*"(n+1
—L’T(—J {55 R* T (u_ — ) — (s, —so) RO, + Dy i

+ (5, +s) Ry p_[(n4+ D (- —p ) —(n—=DTE] =4 —Dpipl},
s RI; Ty —4dp pu_

SR +p_—p)+aupn

559 R(kyp —r p ) —2(s,+se)p, 0o
5,.5gRUY +2(s, +s)p, it
b, R*(n—1

by, = *—~D—) {85 R* T (u_—p,)

b_, = 2 Re(a,)R?

b_z = d2R4

bl

— (s, +se) Ry p_[(y —p Y+ D+TE(n—1)]
+(sg—8)Rpyp_(cy + D —4(m* — Dy p2 }

= 2n+2
an+lR

D,
—4n* (0 — Dyl P +2(ss—s)R(* ~ Dk, + Dp, p?

= (s, +s0)Rp 20, + Dp_ +1*[(n— DT+ (n+ Dy —p )]},

{5,85R*[( 4 + Dp_ (T2 =T*)—r (. —pu_)T*]

o = ao L +bo(p. —u_) 2a,R’s,s9(pt, —p )T
° (k_+Dpy (_ + D, [5,50RTT +2(5, + 500ty 1]

4 20, R?p p [2(5,+55) (s —p_ )+ (s, —sp) (k. +Dp_]
(e + Dy [5,56RTZ +2(s, +50)pt 1]
Re(a,)Rs,(x +u_ Am(@) (e, +Dp-
SR +pu_ —pu)+4u,pu (k_+1p,

5

)

o= a, Rs,sp(k, +Du_
: 5,50 RT T +2(s, +So)pt o ph— ’

b,
€t = pp- (e + D (55— 5)(n—1)

an+lR(K+

D DR (S RTS 4+ i [ (5 85) (1= 1)+ s = 55) 0 — DI},

g o bl t =l p —xpiy)
’ (e + Dy

_ 2a,RPs,s(k_ + Dpty (o po —K_py ) + (0 —p )7
(- + Dy Is,5eRTL +2(s, +50)pt p -]

20, R puy pu_[(5,+59)2I' T — (5, —50) (k4 + Dpe ]
(e + 1)y [5,56RTUZ +2(s, +50)pt s pt ]
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b,_R(x,
D,

dyy = i {850 RUL +ppu_[(s, —56) (0" — 1) + (s, +30) (n+ D]}

N @y 1 RP(n+1) (5, + D

) {s:8oRIE =T)+p,p [(5,—50) (0 =2)+ 205, +350)]},  (35)

where 2 < n < N+1, and

r; = K+.u—+,u+7 rt =K_Hy +/’LA’
D, = s5,5R* Tt + (5, +5)Ru, u_ [T (n+ D+ (m—D]+4(n*—1)pi u>.

3.1. Homogeneous remote stress field

The Eshelby condition of homogeneous stress at infinity, particularly relevant in
view of applications (two of which, regarding crack propagation and homogenization of
composite materials, are presented in Section 4) corresponds to a linearly varying dis-
placement field. In this case, the general expression for the complex potentials becomes

o.(2)=az+a_,z7', Y. (@) =bz+b_z7 +b 3277,
¢_(z) =ciz4+e32°, Y_(2) =d,z, (36)

where coefficients g, and b, are related to the conditions at infinity in the following way :

—Z—, b= —au,, whenU, =V =(ux,,0),
K, —1

_ Bu,
Kk, —1’

a, bl = B.uﬁ—s when Uoo = V(Z) =(0’ ﬁxz)a
i

\/E(XZ’XI)’

a, = Oa bl = l\/iyﬂ+, when l}OO = V3 = (37)

with a, ff, yeR. Coefficients a_,, b_,, b_;, ¢, ¢3, d;, result

a_; =

b R?
b (S SRITE( — )+ (3o R p Bp =) =T — 124342,

s, Ru (k=D —p (x_—1))—4p, p_
SR (ko —D+2p ) +4u, p

b_, = 2 Re(a;)R?

b, R*
by =5 {s5R*T7 (- —pry) = Ryt i (5, +0) (02 =3 +3p1.)
2

—Rup (s, —s)(T3 +p_ —p,)—12uipl },
_ Re(a)Rs,(x, + ) I.Im(al)(m +Dpu_
dpp +s,Rp (x —1)+2p ) (k_+Dpy

¢ __bl(sa_sr)(K++l).u2—.u+
3 RDZ s

€y

£

_ biRGe, +Dp_ (5,50 RUZ +65,u, 1)

d, D,

(38)



Dilute composites with imperfectly bonded inclusions 3249

where

D, = 5,50 TT R+ (5,+5) ROT +T ) u, p_ + 1202 %

As noted by Gao (1995), the Eshelby (1957) theorem, stating that the deformation
field is homogeneous inside the inclusion, holds if and only if ¢; = 0. Except for trivial
cases, this occurs when the stiffness in radial and tangential directions are equal, i.e.
s, = s3 = s. In this case, the coefficients of complex potentials reduce to

2SR —p)—2p p_

a_, = E[R
sUTR+2p,

SR(u_(ky =) —p (k_—1))—dp, p_
SR(p (k=D +2u ) +4p p_ ’

SR —p)—2p,p

b_[ = 2R€(a|)R2

b_3 = BIR
SCTRA2pu,
o = Re(a )Rs(k, +1pu_ iIm(a,)(;cJr +Du_
DUUSR(uy (ko — 1) 42 ) +4pp (k_+Dp,

Cy = 03
bR D

d, = '_s_(ﬁi)_ﬂ_. (39)
STTR+2u, u

4. ASYMPTOTIC MODELS OF CRACK TRAJECTORY AND EFFECTIVE PROPERTIES OF
DILUTE COMPOSITES

Applications are presented of the solution obtained in Section 3 (in the specific case of
homogeneous remote conditions) to problems of crack propagation and homogenization
of a dilute suspension of imperfectly bonded, circular inclusions. These examples show the
strong effect of the interface conditions. Roughly speaking, the presence of a finite interfacial
compliance yields a solution which is “intermediate” between the limit cases of zero and
infinite interfacial stiffness, corresponding to a circular cavity and a perfectly bonded elastic
inclusion, respectively. Both the applications presented are based on asymptotic solutions
bearing on the Pdlya and Szegé (1951) dipole representation of a finite defect in an infinite
plane (for a precise definition of this matrix, see Movchan and Movchan, 1995 and
Movchan and Serkov, 1997).

The Polya—-Szegd matrix for circular inclusion with linear interface may be written as

2n 2n
R? £+(K+_1)2 -t (k, —1)?
Bl T N b o
(), —1) (k, —1)°
0 0 2¢

where

SR (e =) —p (e — 1)) —dpp
s Ry (ko —D)+2p ) +dp,p

; (41



3250 D. Bigoni et al.

_SSoRPTE (e —py )+ (5 +so) R pr B —pa) —TH) — 12445 42

¢
85,50 T R+ (5, +50)ROT T +T ) ppu + 122 %

; (42)

and ¢ = (A, +u,.)/@Bru (2, +2u,)). In the particular case of equal radial and tangential
stiffness of the interface, s, = s, = s, the constant ¢ reduces to

_ SR —p ) =2 p

¢
STTR+2u,

It should be noted that (R%*/2¢)¢ (with multiplicity 2) and (R?/2g)n are the two distinct
eigenvalues of 2. It can be therefore easily verified that when one of the eigenvalues of 2
is negative in the limit s, = s, — 00, i.e. for perfectly bonded interface, it remains negative
for any finite (positive) value of interfacial parameters s, and s,. On the other hand, when
one of the eigenvalues of £ is positive in the limit s, = sy — oo, it may always become
negative for a set of values of s, and s,.

When matrix £ is positive definite in the limit case of perfectly bonded interface, it
may happen that matrix 2 becomes identically zero for imperfectly bonded interface with
a proper choice of parameters s, and s,. The condition of vanishing of matrix £ can be
obtained imposing # = ¢ = 0 and thus obtaining

¢ = 4pyp_
"Rl (ky—D)—p (k- =D]’

43)
and

__ Aup B —p 4p)-2T)
RUTE430) (o —p )+ TI(TE T}

(44)

Sp

Conditions (43) and (44) can be satisfied for non negative values of s, and sg, and in this
case the inclusion does not affect the matrix (to the first order). To convince oneself of this
fact, it suffices to consider the particular case

K, =K_=kKk=1+¢, p=ﬁ—+<1, 0<e<?.
Under these assumptions, both eqn (43) and the denominator of the left-hand-side of eqn
(44) are positive. Moreover, it can be shown that

£ 1
> —— —
sg > 0,<p : 2—i—2,

and this provides an example that eqns (43) and (44) can be verified for positive values of
interfacial stiffness parameters. It may be important to remark that Lipton and Vernescu
(1995) have obtained a similar result for homogenization of an elastic material containing
an arbitrary volume fraction of imperfectly bonded spherical inclusions, in the special case
s, = 5o = 5. Their results can be recovered, in the present context, defining the “critical
inclusion radii”

2up

=Bt 45
s(po—py)’ 43)

¢

and
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_ Ao
B = e, D)1y

(46)

For given elastic properties of matrix and inclusion, and for given interfacial parameter s,
if the radius of the inclusion equals one of the two values R; and R,, the Polya and Szegd
matrix 2 becomes singular [see eqns (41) and (42)]. In particular, when the radius equals
R:, we have ¢ = 0. If the two critical radii are equal to the radius of inclusion, then the
Polya and Szegd matrix vanishes. Formulae (45) and (46) were obtained using variational
methods by Lipton and Vernescu (1995) in the non-dilute case.

4.1. Crack trajectory

In a series of papers, Movchan and co-workers (see, Movchan and Movchan, 1995;
Valentini ef al., 1997 ; and references cited therein), have given a framework for analyzing
the trajectory described by a crack in a brittle material as influenced by the presence of
generic defects. These defects deviate the crack path, which would be straight and under
mode [ conditions in the absence of any defect. The formulation is based on asymptotic
analysis and is not repeated here (the interested reader is remanded to Movchan and
Movchan, 1995). The crack is assumed to be at a sufficiently large distance from the defect
(when compared to the defect size). To describe the generic crack tip position, a reference
system is introduced having axis x, coincident with the unperturbed (i.e. rectilinear) mode
I crack path. In this system, the position of the perturbed crack tip is singled out by
coordinates {/, H(/)}, where H is a function of the unperturbed crack tip position /. In the
specific case under consideration, i.e. for a defect consisting in a circular elastic inclusion
with linear interface, this function is:

2
HQ) = %{n(x2+x—2)+é(X*x3)}, @7

where R is the radius of the inclusion and

x—1
N

with x¢, xJ denoting the coordinates of the centre of the inclusion in the orthogonal
reference system having the x| axis coincident with the unperturbed crack trajectory.

It may be worth mentioning that function H(/) in eqn (47) reduces to that cor-
responding to a circular void, for s, = s, = 0, and to that corresponding to a perfectly
bonded inclusion, for s, = 5, — 0.

It should be noted that the crack may be attracted or repelled by the inhomogeneity.
For instance, an inclusion “stiffer”” than the matrix repels the crack and a void attracts it.
More precisely, we say that a crack is attracted by an inclusion if its trajectory completely
lies on the side of the inclusion (with respect to the unperturbed crack path). Conversely,
the crack is repelled when its trajectory lies on the other side. Bearing this definition in
mind, attraction and repulsion are related to the eigenvalues of the Pdlya and Szegé matrix.
Positive (or negative) definiteness of the Polya and Szegd depends on inclusion radius R,
and on material and interfacial parameters u_, y_, k., k_, 5y and s,. For instance, when
s, = 5o = s the Polya and Szegd matrix is positive definite when

X =

1 1 2 k,—1 k-1 4

>—, >—, (48)
By B SR oy B sR
and negative definite when the above expressions have reverse inequalities. Otherwise, the
matrix 2 is indefinite. From the analysis of the eigenvalues of matrix £, it may be concluded
that:
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—if the crack is attracted in the limit case of perfectly bonded interface, it will be not
repelled for imperfectly bonded interface ;

—if the crack deflection is partly positive and partly negative with matrix & indefinite, in
the limit case of perfectly bonded interface, it will be not repelled for imperfectly bonded
interface (i.e. matrix £ will be indefinite or negative definite) ;

—if the crack is repelled in the limit case of perfectly bonded interface, the crack deflection
may be positive, negative, indefinite or zero for imperfectly bonded interface.

The above statements may have implications in the design of brittle composites
reinforced with tough inclusions. For instance, it may be concluded that imperfect interfacial
bonding may drastically reduce the effects of inclusion stiffness. It may be curious to note
that the condition for which the crack trajectory is zero at infinity, i.e. for / — oo, may be
written as

2

R
H(c0) = ~;;f1=0, (49)

and therefore only depends on the radial stiffness parameter s, as specified by eqn (43).
Crack trajectories H(/)/x) vs crack tip position //xJ are reported in Fig. 1 in a non-
dimensional form (i.e. divided by the coordinate x9 of the centre of the defect). These are
the result of interaction with a circular elastic inclusion, positioned at (0, 1), and bonded
with a linear interface. The stiffness of the interface enters in the non-dimensional form

Spx3

. _SX0
r = » Sp =

Ky He (50)
For a better understanding of the figures, it may be useful to note that the crack trajectory
would be coincident with the horizontal axis in the trivial case where the inclusion is
suppressed. Various values of interfacial stiffness are considered, ranging between the
extreme cases of perfectly bonded interface s — co and circular void s = 0. In the case of
Fig. 1, equal radial and tangential stiffness of interface has been considered, i.e. §, = §y = s.
Fig. 1(a) pertains to an inclusion stiffer than the matrix (u_/u, = 100), whereas the opposite
situation of matrix stiffer than the inclusion (u_/u, = 1/10) is considered in Fig. 1(b).
Moreover, k_ = k. = 2 has been considered in both figures (a) and (b). Note that the two
rigidity ratios p_/p, = 100, 1/10 have been selected to give full evidence to results. A large
ratio between defect centre ordinate and inclusion radius has been used, and therefore small
crack deflections (divided by x3) result. It can be observed that the crack trajectory changes
even qualitatively, depending on the value of stiffness of the interface, for inclusion stiffer
than the matrix (Fig. 1(a)). In particular, the crack is attracted for small interfacial stiffness
and repelled when this is sufficiently high. In the opposite case of inclusion weaker than the

] 1]
HOS L T o | HOA,
110 B 110 -4
5107
610"
0
. 2107
-510
- Z 5 10 -10 -5 ) 5 10
10 (a) 5 0 I/x()2 (b) l/x02

Fig. 1. Crack trajectories H(/)/x3 vs crack tip position //x3, resulting from interaction with a circular

elastic inclusion bonded with a linear interface with equal radial and tangential stiffness. Different

values of interfacial stiffness are considered. (a) The inclusion is stiffer than the matrix
(u_/p. = 100), (b) the inclusion is weaker than the matrix (u_/u, = 1/10).
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-g10™
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Fig. 2. Crack trajectories H(/)/x$ vs crack tip position //x3, resulting from interaction with a circular

elastic inclusion stiffer than the matrix and bonded with a linear interface. Different values of

interfacial stiffness s, are considered, for the same value of parameter s,, producing zero deflection
of the crack path at infinity.

matrix (Fig. 1(b)), the effect of interfacial compliance is only quantitative, and the crack is
attracted for all values of s.

Three values of tangential stiffness s, for the fixed value eqn (43) of radial stiffness
corresponding to null crack deflection at infinity are considered in Fig. 2. The stiffness of
the interface enters in the nondimensional form eqn (50) and the values §, = 100,
So & 6.8345, and §, = 0 are reported for §, ~ 40.4040. The Polya—Szegd matrix is identically
zero and crack remains straight when §; &~ 6.8345. In the cases §, = 0, 100, the Polya—Szego
matrix is indefinite. The case u_/p, = 100 and k_ = &k, = 2 is considered. It can be noted
that the tangential stiffness parameter s, strongly affects the crack path near the abscissa
corresponding to the inclusion centre. Moreover, as an effect related to the tangential
stiffness of interface, the curves may have reversed sign.

4.2. Effective moduli of dilute composites

In this Section the homogenization technique for composites including small inclusions
with non-perfect interface is presented and discussed. A periodic distribution of isotropic—
elastic defects in an isotropic—elastic matrix yields, in general, an anisotropic, elastic homo-
genized material (see e.g. Nemat-Nasser and Hori, 1993). Following Movchan and Serkov
(1997), a periodic, dilute distribution of elastic defects may be described by a matrix #*
of effective moduli representable in the form

Ay +2u, Al 0
H* = H+E2P+0@E), H° = A, A 4+2u, O 51
0 0 2u,

where #° is the matrix of elastic moduli of the matrix material, 2 is the Polya—Szeg6
matrix, normalized with respect to R? (i.e. the matrix given by eqn (40) in which R = 1), ¢
is the ratio between the radius of inclusion and the characteristic size of the periodic cell.
In terms of volume fraction f of the inclusions, defined as

(where C is the area of elementary cell and R is the inclusion radius) eqn (51) can be written
as
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H* =Jf"+{;9+0(f2), (52)
a formula which is valid even beyond the condition of periodicity, including the dilute,
random, uniform distribution of iso-oriented defects.

For the given matrix & eqn (40), corresponding to circular defects, the homogenized
material results to be isotropic and therefore defined by two independent elastic parameters.
Moreover, in the limits s, = s, = 0 and s, = 5, — 00, the effective moduli of a dilute dis-
tribution of circular voids and perfectly bonded inclusions are recovered, respectively
(Nemat-Nasser and Hori, 1993, Sections 5.1.2 and 8.2.1). It can be interesting to analyze
how the effective moduli change under different interface conditions, for fixed geometry
and elastic properties of the composite. In other words, let us consider a given dilute,
periodic distribution of circular inclusions with imperfect bonding and take the two interface
stiffness parameters s, and s, as two variables ranging between zero and infinity. We remark
that this idea can be applied to inclusions of a general shape (yielding an anisotropic
material) and a corresponding surface in 3-D space can be constructed, associated with the
parameters describing effective moduli : the average Young’s modulus £*, the bulk modulus
K*, and the shear modulus u*:

E*=FE _+&AE, K*=K, +eAK, p*=pu, +& Ay, (53)

where, referring to the plain straincase, E, = (du (u. +41,))/(A.+2uyand K, =4, +pu,.
Moreover, AE, AK, and Au are functions of the interfacial stiffness. In our particular case
of dilute distribution of circular inclusions, the material is isotropic, and only two of
parameters (53) are independent.

In terms of Pdlya—Szegd matrix (40), the perturbation in the elastic constants can be
expressed as

AE= 2Py +Pon) (LY Py, 4+ Pry— 2Py 2
- 11 22 K++1 11 22 12 K++1’
AK:%(P11+P22+2P12), AH=%P33, (54)

where P,; denote the components of the Pélya—Szegd matrix (with R = 1).

The set of parameters (AE, AK, Au) describes the changes of the elastic moduli, and
may be represented as a point in a 3-D space. When the interfacial stiffness parameters are
changed, the point in 3-D space moves. Thus, all possible changes of the effective moduli
tensor can be specified via some domain in 3-D space (Luri and Cherkaev, 1987), which in
the specific elastic isotropic case under consideration may be anticipated to be a plane.
Considering the representation (54) for AE, AK, Au and formula (40) for Polya—Szegd
matrix, we can note that

AE = a(n+28), AK=Pn Au=yi,

where a, f and y are constants only depending on the elastic coefficients of the matrix.
Therefore, all points in the space (AE, AK, Ap) can be characterized by the following

mapping
Y . {(Sra SG) —»(a(r] +2£)5 ﬂrls ’yé)a Sy € [Os (x))’ Sq € [07 w)} .

This is a one-to-one mapping having the following properties :

o Since the homogenized material is isotropic, all points (AE, AK, Ap) lie on a plane having
normal vector of components (By, —oy, —2ef). Thus the region (s,, s) : [0, 00) x [0, c0) is
mapped onto a 2-D domain. Note that the orientation of the plane only depends on the
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elastic properties of the matrix and is therefore independent of the elastic coefficients of
the inclusion.

e The domain representing all possible variations of the set (AE, AK, Ay) due to changes in
the interface stiffness has vertices in the points where s, and s, are equal to 0 or tend to
infinity :

—s5,=5,=0:

6 1 1
q@c. +1)° 2q(k, —1)° g

—5,=0,5=00:

2 (6(u_—u+>—2rt 1)
g, +1)? Ars+TIt '

1 _ T+
P

AK = — = ;
2q(x, —1)? 4q(3T; +T7)

—s,=00,5=0:

2 (6(;1_ —p) =20t | Ti-T! )
gk, +1)? ar; +I+ Tt —p,/)
r;-r+ —p)—T*
K= + . Au= 3(p_—py) =,
2qCr+p_ —py ), —1) 43T, +T'1)

—8, = 00, 8= 0C0:

2 2u_— r;-I+
AE = ( (p_—py) + + - )’
g, +1)° r; Prdp —p,
r;-r+ -
AK = - + -, Ap = H Hy '
29TE+p_ —p ), —1) 4qT

e The domain representing all possible points (AE, AK, Ay) is bounded by two parallel
lines connecting the points corresponding to s, = 5, = 0,5, = 0, 5, = 00 and s, = 5, = 00,
s, = o0, 5 = 0. These lines are characterized by the condition # = const. and have normal
vector of components (2% 40+ By?, —22’y). The other two boundaries of the area
are connected by two curves. In particular, an analysis of these yields the following
observations.

—Curve of the boundary connecting points s, = s = 0 and s, = c0, 5, = 0:

'I(‘f) = n(S,,Sg = 0)3 é = é(srs Sp = O)a

HELr N 2
WE=NC" 0. provided i, —u_ > 2T+ —T7.

n"(€) = @y 3

—Curve of the boundary connecting points s, = s, = oo and 5, = 0, 5, = 00 :
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n(€):n = nls,, s > ), &=Es,, 5 — 0),

nES N r+ F+ -
n'(&) = 115—116 <0, provided u, —pu_ < _“(_‘__FL)
©y K) I

It can be therefore concluded that the set of points (AE, AK, Au) is convex when

2 r+(I+-T7)
ST —TIi<p,—p €———

holds.

In closure of this Section, it may be important to mention that when condition ¢ = 0 eqn
(42) is satisfied for positive values of s, and s,, the homogenized material has the same shear
modulus as the matrix. When # = 0 eqn (41) is verified for positive s, and s,, the bulk
modulus of the homogenized material and of the matrix are equal. Finally, when both eqns
(43) and (44) are satisfied, i.e. when ¢ = 5 = 0, for positive interfacial stiffness parameters,
the inclusions do not have any influence on the properties of the composite (to first order
in the volume fraction). These results, obtained here in the dilute approximation, where
known for generic volume fraction of inclusions in the special case of equal radial and
tangential interfacial stiffness—i.e. in terms of critical radii, see eqns (45) and (46)—(Lipton
and Vernescu, 1995, Corollaries 4.3-4.6).

5. CONCLUSIONS

The problem of a circular elastic inclusion bonded with a linear interface to an infinite
elastic matrix has been solved under general conditions at infinity. These remote conditions
include, as special cases, the homogeneous and the bending stress fields. In order to give
full evidence to the strong effect related to imperfect bonding, the obtained solution has
been applied to problems of crack propagation and homogenization of dilute, periodic
composites. Results obtained in this article clearly demonstrate a strong influence of inter-
facial conditions, particularly when the inclusions are stiffer than the matrix. The presented
solutions for crack trajectory and homogenization may be employed to analyze toughness
and stiffness of materials containing inclusions.
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APPENDIX
Equation (28) and eqn (34), holding for ne Z, can be rewritten as:

a_R""+(n+a, R +b,_R"' =c¢,_,R'""+(n+1)&, R +d,_ R,
a . R*"+(~-nma _,R "+b_, R =, R+ (1 —n)E _,R'",

S, + 5
4u

S, + 8

V(’ﬁanﬂRMl —(1-ma,_,R'"—b_,_ R —

(K_Cp 1 R™ = (1=m)e, ,R'™")

- SY~S — —_
+2 s”(x+al,,R‘*u(n+1)aMR"+'—bHR"*')———“ Yk TR " —(n+ 1), R™ —d,_ R"™Y)

4y, B i
=(n+1Da,  R"+(-n’)a, _,R"+(n+1)b_,_.,R™"2,

S, . - S, + S - _
S,+59(K+a'n+lR~n—1 —(1+n)a_1+,,Rl+n~—b,,,‘R"7])———iH(K,CA,HlR‘"JrI —(1+n)c'1+,,R”"—d,,,.R” 1)
4. dp-
— 8, =3, _n
+s;ms”(mmR‘“—(l—n)aAH.R‘"“—b_n_.R-"-‘)— i “(k_ Gy R — (1 =n)c_ps RT™Y)
. _

=(1-ma_,, R+ (1+n)a R+ (1—n)b, R,
c,=d_,=0,

where ne[—N—1,N—1].

Solving the system for n = 0 yields the coefficients ¢, and &_,, whereas for n = 1 coefficients ¢y, d;, ¢5, b_, are
obtained. Coefficients a, _,. #_,_1, ¢..1» d,_, can be easily obtained for the appropriate values of n > 2. In
particular, for n = 2, the coefficients a_,, b_5, ¢3, d, are obtained:
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b R?
a_y = ITZ‘{MHRZIT(H*—M)
+ (s, + )R p[Buo —p ) —TE]— 1207 2 }
3a;R*
+ = (S RT (e — )+ R(sp—5) (e + D st
2

+ R(s, s pep_[Blu —p ) —TE]— 1247 p2 },

b, R*
boy= })2 {8,50R°T - (u_ — i)+, Ry pi_ Qu_ — ) ~TE—T7)
+soRup (Ao —p ) -T2 4T —1245 2}
d3R6 2 + - -1+ —32
-D {S,SHR (e —p )@rI+IH+Irr—Ty)9)
2
+as, Rp p_(py —p +TT+207)
—4soRu p_(4(u, —p ) +TT T +48uk 2},
_(k.+1
e =Bt D 4y 50+ an R0 50RT + 200, 525,
2
Ru_(x.+1
d, = Ji% {b,[5,50RT* +6, 5] +3a;R2[s,5,RIC* —T7) +4s,u, 1},
2

where

D, = s5,5,R T T4+ (5, +5) RO +T ), p_ + 1245 42 .



